Printed Page:- 04			Subject Code:- AEC0301					
		R	Coll. No:					
			ID TECHNOLOG	CV. CDEATED	NOIDA			
NC	JIDA .	INSTITUTE OF ENGINEERING AN (An Autonomous Institute Affil		•	NOIDA			
(An Autonomous Institute Affiliated to AKTU, Lucknow) B.Tech								
SEM: III - THEORY EXAMINATION (2023- 2024)								
Subject: Digital System Design								
		Hours		Max. M	Iarks: 100			
		structions: Sy that you have received the question pa	nar with the correc	et course code h	ranch atc			
		estion paper comprises of three Sections						
		(MCQ's) & Subjective type questions.	, , == == == == ==	······································				
2. <i>Ma</i>	ximun	n marks for each question are indicated	on right -hand side	e of each question	ı.			
		your answers with neat sketches where	ver necessary.					
		suitable data if necessary.						
	-	ly, write the answers in sequential order should be left blank. Any written materi		eet will not he				
		hecked.						
SEC ₁	TION-	<u>-A</u>			20			
1. Att	empt a	all parts:-						
1-a.	Н	Iamming code is capable of (CO1)	1202		1			
	(a)	Only detect single-bit error	00					
	(b)	Only correct single-bit error	1					
	(c)	Detect and correct single bit error						
	(d)	Detect and correct multiple bit errors						
1-b.	T	The logical expression $Y = \sum m(0, 3, 6, 7, 6, 7)$	10, 12, 15) is equiv	valent to (CO1)	1			
	(a)	πM(0, 3, 6, 7, 10, 12, 15)						
	(b)	πM(1, 2, 4, 5, 8, 9, 11, 13, 14)						
	(c)	Σm(1, 2, 4, 5, 8, 9, 11, 13, 14)						
	(d)	Σm(0, 2, 4, 6, 8, 10, 12, 14)						
1-c.	Н	Iow many data select lines are required f	or selecting eight in	nputs? (CO2)	1			
	(a)	1		• , ,				
	(b)	2						
	(c)	3						
	(d)	4						
1-d.	` ′	The output of SUM is equal to output of	(CO2)		1			
	(a)	OR gate						
	(b)	AND gate						
	(-)	$\boldsymbol{\omega}$						

(c)	X-OR gate			
(d)	X-Nor gate			
Why latches are called memory devices? (CO3)				
(a)	It has capability to stare 8 bits of data			
(b)	It has internal memory of 4 bit			
(c)	It can store one bit of data			
(d)	It can store infinite amount of data			
When both inputs of SR latches are high, the latch goes (CO3)				
(a)	Unstable			
(b)	Stable			
(c)	Indeterminate state			
(d)	Bistable			
Which of the following is the most widely employed logic family? (CO4)				
(a)	Emitter-coupled logic			
(b)	Transistor-transistor logic			
(c)	PMOS logic			
(d)	NMOS logic			
Which of the following is the propagation delay of TTL circuits? (CO4)				
(a)	1 s			
(b)	1 ms			
(c)	1 ns			
(d)	1 ps			
A	typical SRAM cell is made up ofTransistors. (CO5)	1		
(a)	two			
(b)	four			
(c)	six			
(d)	eight			
F	or 5K memory, how many address lines are needed? (CO5)	1		
(a)	10			
(b)	13			
(c)	12			
(d)	9			
empt a	all parts:-			
W	Vrite the Demorgan's Theorem. (CO1)	2		
D	Define Multiplexer. (CO2)	2		
W	Vrite the advantages of sequential circuits? (CO3)	2		
D	Define the terms: a) power dissipation b) Figure of merit. (CO4)	2		
	(d) W (a) (b) (c) (d) A (a) (b) (c) (d) F (a) (b) (c) (d) W (b) (c) (d) W (c) (d) W (d) W (d) W (d) W (d) W (empt a	Why latches are called memory devices? (CO3) (a) It has capability to stare 8 bits of data (b) It has internal memory of 4 bit (c) It can store one bit of data (d) It can store infinite amount of data When both inputs of SR latches are high, the latch goes (CO3) (a) Unstable (b) Stable (c) Indeterminate state (d) Bistable Which of the following is the most widely employed logic family? (CO4) (a) Emitter-coupled logic (b) Transistor-transistor logic (c) PMOS logic (d) NMOS logic Which of the following is the propagation delay of TTL circuits? (CO4) (a) I s (b) I ms (c) I ns (d) I ps A typical SRAM cell is made up ofTransistors. (CO5) (a) two (b) four (c) six (d) eight For 5K memory, how many address lines are needed? (CO5) (a) 10 (b) 13 (c) 12		

2.e.	what is an EPROM? (CO3)	2
SECTI	ON-B	30
3. Ansv	ver any <u>five</u> of the following:-	
3-a.	Convert the binary number 11011110 into the decimal, octal and Hexadecimal equivalent. (CO1)	6
3-b.	Explain weighted binary code. (CO1)	6
3-c.	Explain encoder using proper example. (CO2)	6
3-d.	Implement the Boolean function f (A,B,C,D) = \sum (2,4,6,9,10,11,13) with 8:1 multiplexers. (CO2)	6
3.e.	Draw JK flip-flop and derive its characteristic equation. Explain how will you convert it into T flip-flop. (CO3)	6
3.f.	Draw the TTL NAND gate. (CO4)	6
3.g.	Differentiate between SRAM & DRAM. (CO5)	6
SECTI	<u>ON-C</u>	50
4. Ansv	ver any one of the following:-	
4-a.	Represent the decimal number (396) ₁₀ in (CO1) (i) Binary code (straight binary) (ii) BCD code (iii) Excess-3 code (iv) Octal code (v) Hexa decimal code	10
4-b.	What is Hamming code? Construct the Hamming code for the data 1010 with (CO1) a. even parity b. odd parity	10
5. Ansv	ver any one of the following:-	
5-a.	Write an expression for sum and carry output of full added and design a full adder using two half adder. (CO2)	10
5-b.	What is the difference between encoder and decoder? Explain with example. (CO2)	10
6. Ansv	ver any one of the following:-	
6-a.	Name the four basic types of shift register, and draw a block diagram for each. (CO3)	10
6-b.	Explain the Master-Slave Flip-Flop. How it overcome the race condition of J-K flip-flop. Use proper logic diagram. (CO3)	10
7. Ansv	ver any one of the following:-	
7-a.	What do you mean by RTL logic families explain in detail? (CO4)	10
7-b.	Compare TTL, ECL and CMOS logic families. (CO4)	10
8. Ansv	ver any <u>one</u> of the following:-	
8-a.	Draw the block diagram of PLA and explain the function of each block. (CO5)	10

COR.